Retinal Lasers in the Era of Anti-VEGF

Stephen Huddleston MD
Charles Retina Institute

PRP
- Diabetic Retinopathy Study
 - 1970’s
 - National Eye Institute Study
 - Proved panretinal photocoagulation works in PDR
- Early treatment of Diabetic Retinopathy Study
 - 1980’s
 - National Eye Institute Study
 - Recommended close follow up without PRP for:
 - Mild/moderate NPDR

Early treatment of Diabetic Retinopathy Study
- National Eye Institute Study
- Recommended close follow up without PRP for:
 - Mild/moderate NPDR

PRP vs Anti-VEGF for PDR
- Avastin shown to be non-inferior to PRP in terms of vision gain
- Anti-VEGF lessens the risk of worsening diabetic retinopathy when used to treat DME
- Avastin shown to be more expensive compared to PRP alone over a two year time frame
- PRP is a permanent treatment and anti-VEGF requires chronic therapy
- Decision on what to do for primary treatment of PDR is highly patient dependent...

When to Use PRP Now?
- Good clinical indicators:
 - Any degree of neovascularization
 - High-risk NPDR
 - Poor outcome in fellow eye (NVG/TRD)
 - Poor expected compliance
- Anti-VEGF agents (Avastin/Eylea/Lucentis)
 - Treat neovascularization and may delay need for PRP
 - A series of anti-VEGF injections will cause retinopathy regression
 - Highly dependent on patient adhering to monthly follow up
- Main determiner of PRP timing is predicted patient compliance
- PRP still has a significant role in treating diabetic eye disease

High Risk NPDR 4-2-1 Rule
- Diffuse intraretinal heme in 4 quadrants
- Venous beading in 2 quadrants
- Intraretinal microvascular abnormalities in 1 quadrant
Why does PRP work?

- Retinal vascular disease (Diabetes, Eales, sickle cell)
 - Create ischemic retina
 - Leads to oxygen demand/availability imbalance
 - Oxygen deficient tissue then secretes:
 - VEGF
 - Various other cytokines
 - Causes neovascularization and vascular leakage
 - Permanent vision loss

- PRP rebalances oxygen demand/availability by
 - Coagulating RPE cells \(\rightarrow\) kills photoreceptors and reduces oxygen need
 - Allows choroidal oxygen to penetrate to the inner retina
 - Decreasing cytokine production
 - Reversing neovascularization and vascular leakage

PRP

- Conventional settings:
 - Wavelength: 514-532 nm
 - Duration: 100-200 ms
 - Spot size: 100-500 um
 - Power: 200-750 mW
 - Spots: 1300-1500

- CRI settings:
 - Wavelength: 532nm (green pascal)
 - Duration: 100 ms
 - Spot size: 200
 - # of Spots: Completely dependent on:
 - Disease severity
 - Projected patient compliance
 - Power: titrate to treatment, any power appropriate
 - Young diabetics may need less than 200 mW
 - Dense cataracts may require very high mW

PRP for non perfused peripheral retina

- Using wide field fluorescein angiography to detect ischemic areas for later ablative PRP
- Logically should work to reduce diabetic/CRVO macular edema by reducing VEGF load
- No consensus that it does work
- Dr. David Brown presented data at the 2016 Angiogenesis conference showing no improvement after peripheral total ablation to non perfused areas
- Dr. Wykoff also recently stated he has seen no improvement in CRVO and DME after targeted PRP using wide field IVFA
- Final data presented at AAO 2016 confirms lack of effect
- Better option: ratchet down disease with anti-VEGF and do non ablative PRP
- Wide field IVFA still essential for detecting peripheral disease

Macular Focal Laser

- Classic treatment for diabetic macular edema
- Use now greatly diminished with the advent of anti-VEGF therapy
- Anti-VEGF indicated in 95%+ of DME cases
 - Patients with poor compliance, limited medical access, or those unable to tolerate injections make up majority of focal laser cases for DME at CRI
- Focal treatment of non foveal choroidal neovascular membranes
- Treatment of macroaneurysms
- Focal treatment of CSR choroidal leakage (non foveal)

Heavy Focal Examples

- Chorioretinal scars, foveal atrophy
Heavy Focal Examples

After 360 foveal focal by outside doctor

After a series of Avastin injections

Large perifoveal micro A identified

One month after laser

Three months after laser

Focal Laser for Diabetic Macular Edema

- Focal laser should ONLY target micro aneurysms to treat diabetic macular edema
- Focal laser should NOT be used as grid treatment to reduce swelling
 - Destroys photoreceptors leading to:
 - Decreased contrast sensitivity
 - Decreased ability to fixate
 - Decreased reading speed
 - Destroying the macula to reduce swelling is a bad idea

Focal Laser

- Classic settings:
 - Small spot size: 50-100 um
 - Short pulse duration: 50-100 ms
 - Power titrated to whitening of retina
- Settings used at CRI:
 - Spot size: 100 um
 - Duration: 15-35 ms
 - Power titrated to occlusion of microaneurysm

Focal Laser for CNV, Macro Aneurysms, and CSR:

- Much longer duration
- Much higher power
- Bright white spot needed
- No set settings, high degree of customization needed

Sub threshold laser for DME

- Relatively new modality designed to counteract anti-VEGF effect on laser industry
- Focal laser pays about 5X the reimbursement of an anti-VEGF injection
- In theory creates an effect on RPE cells to reduce VEGF without killing overlying photoreceptors
 - Uses 10-25% of energy needed to create a visible effect
 - Invisible effect during treatment and after if done correctly
 - Very safe when done correctly, minimally effective in most cases
 - Strong push for adoption by industry and some retina specialists
- Conclusion: Only industry sponsored studies show effect; only industry sponsored doctors push it
Photodynamic Therapy
- Dying laser modality
- Very expensive IV medicine needed (verteporfin)
- Hard to get insurance to pay for it
- No new FDA approved lasers being made
- Still making lasers in Europe
- Hard to service and repair
- Vitreous Macular Consultants (Bailey Freund, Yannuzzi, Rick Spaide)
- Only functioning PDT in greater Manhattan
- CRI PDT laser still works
- Useful for:
 - Choroidal hemangiomas
 - Retinal Capillary hemangioblastomas (Von Hippel Lindau)
 - Central Serous Chorioretinopathy

Laser Indirect Ophthalmoscopy
- Retina Tears/holes
- Walling off chronic retinal detachments
- Walling off retinoschisis
- PRP in some clinics
- Ablative treatment in ROP and COATS
 - Intravitreal Avastin now replacing most ROP laser, and used in Coats as well

Can be temporized with Avastin
permanent treatment usually needed: cryo, focal laser or PDT

Drainage site
CRYO for ROP

Laser for ROP

Anti-VEGF should be the new gold Standard for ROP
Fear of systemic side effects and liability Prevent complete adoption

Briefly: Retinal Imaging

- Classic:
 - Thorough macular exam with contact lens at slit lamp
 - Fluorescein imaging and indocyanine green
 - B scan if needed
- Modern:
 - Optical coherence tomography
 - Fundus autoflourescence
 - OCT angiography
 - Rarely Fluorescein or indocyanine green imaging

Optical Coherence Tomography

- The most important imaging modality in Ophthalmology today
- Non invasive and fast
- Uses light to create cross sections of the retina
 - Interprets back scattering of life as the tissue is penetrated
- Resolves down to 5 um
- Initially were false color images, all modern machines use gray scale which is more accurate
- Colorized images are misleading

OCT

- HEI, CRI, and the VA
 - All use Heidelberg Spectrals
 - Best OCT system available today
 - Expensive
- Zeiss (Cirrus); Bioplogen, Topcon, Optopol, Optovue (iVue), etc
- Need special modules for things like fundus autoflourescence, fluorescein angiography, ICG angiography

International Nomenclature for OCT Meeting

Consensus Normal OCT Terminology

Rick Spade
Fluorescein Angiography
- Developed 1961
- Past gold standard for retina imaging
- Displaced by high quality OCT scans
- Will be replaced by OCT angiography
- Only advantages over OCTA:
 - Shows leakage
 - Can be billed for

Fluorescein Angiography
- Complications:
 - Nausea
 - Intractable vomiting
 - Pruritus
 - Anaphylaxis
 - Bronchospasm
- Death
 - Ex fellow of Dr. Charles had a patient die in office 10 years ago
 - 7 figure settlement

OCT-Angiography
- Future of angiography
- Non invasive
- Fast
- Shows everything IFVA does except leakage
- However, unable to produce wide field images

Summary
- Anti-VEGF has replaced most indications for posterior pole laser
- PRP and focal still have a role for a number of retinal diseases
- Ablative laser still have widespread use in ROP despite anti-VEGF replacing it in many practices including CRI
- OCT angiography will be available at CRI shortly

Questions